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Introduction  

The study of chemical kinetics is usually 
undertaken in order to establish the rate 
expression or model for any reaction. The 
obtained rate expression relates the rate of                                            

reaction to the factors that control the 
reaction, namely, temperature, pressure, and 
concentration. This is accomplished by 
identifying the reaction mechanism through 
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a postulation of the sequence of elementary 
steps characterizing the reaction. Once a rate 
model is obtained for a reaction under study, 
it becomes necessary to determine the 
kinetic parameters (rate and equilibrium 
constants) in the model from experimental 
concentration - time data. Such kinetic 
parameters are important in sizing of 
reactors and pointing the direction of 
enhancing the reaction yield/selectivity 
patterns (Susu, 1997).  

There are varieties of techniques developed 
for the estimation of kinetic parameters in a 
rate model from experimental data. The 
most popular of these techniques is the 
integration method where the rate equations 
are integrated to give the concentrations of 
the reactants and products as a function of 
time with the parameters appearing as 
unknowns. The unknown parameters are 
then obtained by matching the resulting 
concentration - time profile with 
experimental data using commercial 
software. However, this method suffers a 
setback when applied to reactions with 
complex rate expressions as integration 
becomes highly difficult. For instance,   the 
rate expression arising from heterogeneous 
catalytic reactions are often formidable due 
to large number of elementary steps 
characterizing the reactions and so, 
obtaining concentration of any specie as a 
function of time and reaction parameters 
from such model becomes tedious.  

Furthermore, integrating the rate equations 
generally leads to complicated concentration 
- time profile thereby making it difficult to 
determine the set of parameters to a 
reasonable degree of accuracy. The time - 
concentration profile resulting from a 
pyrolysis reaction studied by Priyanka and 
Jalal (2012) is a clear example of such cases. 
Interestingly, the setbacks highlighted above 
can be circumvented by using a technique 

known as Tikhonov regularization to 
convert the experimental 

 
time 

concentration data into concentration - 
reaction rate data. Since the expressions for 
the reaction rate models are usually simpler 
than for the integrated time - concentration 
profiles, the parameters can be obtained with 
greater ease and possibly also with a higher 
degree of accuracy (Yeow et al., 2003). 
Once the form of data to be used has been 
identified, parameter estimation would then 
require least square fitting of the rate 
equation into the concentration - reaction 
rate curve or concentration - time profile. 
Several numerical minimization techniques 
have been developed to perform this task. 
These include simulated annealing, Nedler - 
Mead simplex method, differentiation 
evolution and random search method (Press 
et al., 1972). All these minimization 
computations entail the assumption of initial 
guesses and can be performed using 
commercial software.  The general objective 
in optimization is to choose a set of values 
of variables (parameters) subject to the 
various constraints that produce the desired 
optimum response for the chosen objective 
function (Edgar et al., 2001).   

The use of Monte-Carlo simulation for 
parameter estimation has been used by a 
number of researchers. Zhang and Guay 
(2002) used the technique for adaptive 
parameter estimation for microbial growth 
kinetics. Marshal (2003) used it for the least 
squares parameter estimation from multi-
equation implicit models. The method was 
also used by Zhan et al. (2003) for the 
estimation of parameters for propylene 
amoxidation while Agarrwal and Carrayrou 
(2006) exploited the method in estimating 
kinetic parameters of reactive transport and 
lastly, Priyanka and Jalal (2012) used the 
Monte-Carlo simulation to estimate the 
kinetic parameters for pyrolysis of biomass. 
In all the works mentioned, kinetic data 
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were used in their raw form (i.e. time-
concentration) but in the present work, 
kinetic data are used in their processed form 
(i.e. concentration-reaction rate).This work 
therefore, studies the suitability and 
accuracy of kinetic parameter estimation for 
complex reactions by Monte-Carlo 
simulation through Tikhonov Regularization 
technique.  

Tikhonov Regularization Technique  

The derivation of the working equations of 
Tikhonov regularization (Engl et al., 2000) 
is rather complicated, but the computational 
steps associated with the procedure are quite 
straightforward.   

The Governing Equation  

Generally, reaction rate )(tr can be 

expressed in terms of concentration )(tc  as: 

dt

tdc
tr

)(
)(

  

           (1)       

which can be rewritten as: 

00'
')'()( cdttrtc

t

t

 

  (2) 

where 0c is the initial concentration. 
Equation (2) is a Volterra integral equation 

for the unknown reaction rate )(tr and 

initial concentration 0c  if this quantity is not 
measured directly or if the experimental 
measurement is considered to be unreliable. 
This is an integral equation of the first kind. 
The mathematical nature of this equation 

shows that the problem of obtaining )(tr is 
an ill-posed problem in the sense that if 
inappropriate methods are used, the noise in 
the experimentally measured time-
concentration data will be amplified leading 
to inaccurate results (Engl et al., 2000). 

Instead of solving Equation (2) directly for 
)(tr , this equation can be integrated by parts 

as follows:  

Given a function )(tf  such that   

dt

tdr
tf

)(
)(

 

      (3)   

Integrating the RHS of Equation (2) by parts 
gives   

t

t

t
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                                                       (4)  

Substituting for )'( tdr from Equations 
(3), we have  

t

t

t

t

t

t
dttfttrtdttr

0'0'0'
')'(')'('')'(   

                              (5)  

Combining Equations (2) and (5),  

00'0'
')'(')'(')( cdttfttrttc

t

t

t

t

C

                                     (6) 

where the superscripts C and M

 

are used 
to distinguish between the computed 

concentration 
Cc and the experimentally 

measured concentration 
Mc .  

00'
')'(')()( cdttftttrtc

t

t

C

    

                   (7)  
From Equation (3) 

00'
')'()( rdttftr

t

t

 

(8)  

where 0r  is the initial rate of reaction.  
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Combining Equations (7) and (8), we have 

00'00'
')'('')'()( cdttftrdttfttc

t

t

t

t

C

       
(9) 

000'
')'(')( trcdttftttc

t

t

C

     

                       (10)  

Equation (10) is the governing equation and 
the starting point of this investigation. It can 
be regarded as the Volterra integral equation 
of the first kind to be solved for the 

unknown function )(tf and the constants 

0c and 0r . From the way this equation was 
obtained it is clear that it is independent of 
reaction mechanism.  

Given the values of )(tf , 0c and 0r , )(tr 

and )(tc can be computed by direct 
numerical integration. Since numerical 
integration does not suffer from noise 

amplification, the )(tr thus obtained is 
expected to be relatively free from the 
influence of experimental noise (Yeow et 
al., 2003).  

Discretization Of The Volterra Integral 
Equation  

In discretized form Equation (10) becomes 
ij

j

tt

t
jjiiji

C
i tfttrtctc

'

0'
00 ')'()(

   

 (11)  

where, DNi ,....,2,1 , and KNj ,.....,2,1 ,     
               (12) 

DN is the number of data points, and KN is 
the number of discretization points. 

KNffff .......,, ,3,21 are the discretized )(tf . 

The independent variable max'0 tt

 

is 

divided into KN uniformly spaced 

discretization points with step 

size )1(' max KNtt , where DNttmax 

is the largest it in the data set. ij

 
is the 

coefficient arising from the numerical 
scheme used to approximate the integral in 

Equation (2.10). For Simpson s 31 rule, 
32ij

 

for odd j (except 311i ), and 
34ij  for even  j.  

The deviation of 
Cc  from 

Mc  is given by   

ij
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where 
1iC

and ii tB
 and                                                                             

                                                                (15)  

')'( tttA jiijij

 

for 

ji tt '
,       0

 

for  ji tt '
,  (16) 

Di Nit ......,3,2,1,

 

are the times at which 
the concentration is measured and 

Kj Njt ......,3,2,1,'

 

are the uniformly 

spaced discretized time max'0 tt .    

In matrix notation Equation (14) can be 
rewritten as  

AfBCc 00 rcM

 

       
                                     (17) 

where, 
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ij

j

tt

t
jiij ttt

'

0'

')'(A    

         (18)  

C and B

 
are 1DN column vectors, A

 
is 

a KD NN

 

matrix of coefficient of the 
unknown column vector 

T
NK

ffff ,.....,,, 321f
. Since KN 

generally exceeds the number of data points 

DN , A

 

is not a square matrix and Equation 
(14) cannot be inverted to give a unique f , 

0c and 0r . Instead, these unknowns are 
selected to minimize the sum of squares of 

i ,   

TMT
N

i
i rc

D

AfBCc 00
1

2

 

AfBCc 00 rcM  (19)    

However, because of the noise in the 

experimental data, minimizing 
T 

will not 

in general result in a smooth )(tf . Hence, to 
ensure smoothness, additional conditions 
have to be imposed, which is the 
minimization of the sum of squares of the 

second derivative 
22 'dtfd at the internal 

discretization points. In terms of the column 

vector f , this condition takes on the form of 
minimizing  

ffff TTT

j

N

j

k

dt

fd
21

2
2

2

                                         (20)  

where 

 

is the tri-diagonal matrix of 
coefficients arising from the finite difference 

approximation of 
22 'dtfd (Yeow et al., 

2003) and is given by  

2'

1

121

121

.......

.......

121

121

121

t

                                                 (21)     

Tikhonov Regularization  

In Tikhonov regularization (Engl et al., 

2000) instead of minimizing 
T

and 
ff TT

separately, a linear combination 
of these two quantities 

ffR TTT

is minimized. 

 

is an adjustable weighting/regularization 
factor that controls the extent to which the 
noise in the kinetic data is being filtered out. 
Minimizing R

 

requires the following 
conditions to hold:  

0
jf

R

, KNj ......,3,2,1 ,           (22) 

0
0c

R

,             (23) 

0
0r

R

,             (24)  

These give rise to a set of linear algebraic 

equations for f , 0c and 0r (assuming that 
both initial conditions are known). It can be 

shown (Shaw and Tigg, 1994) that the f , 0c 

and 0r that satisfy Equations (22) to (24) are 
given by:  

MTTT cAAAf ''''''
1

       

 (25) 
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where 'f

 
denotes the column vector 

T
N rcffff

K 00321 ,,,.....,,, 
incorporating 

0c and 0r into f . 'A

 
is the composite 

matrix BCA ,, derived from Equations 
(15), (16) and (18) to reflect the inclusion of 

0c and 0r in 'f . Similarly, '

 

is the 

composite matrix 00,, , where 0 is a 
12KN column vector of 0 to allow for 

the fact that 0c and 0r play no part in the 
smoothness condition in Equation (20) 
(Yeow et al., 2003). Equation (25) is the 
operating equation of Tikhonov 
regularization computation.  

Mote-Carlo Simulation  

Monte - Carlo simulation is a general 
method to compute statistical characteristics 
of an output Y which is a function of a 
random variable set X:                                                
y = f (x)           (26)   

It is a type of simulation that relies on 
repeated random sampling and statistical 
analysis to compute the results.This method 
of simulation is very closely related to 
random experiments, experiments for which 
specific result is not known in advance. In 
this context, Monte Carlo simulation can be 
considered as a methodical way of doing so 
- called what-if analysis. We use 
mathematical model in engineering 
discipline to describe the interactions in a 
system using mathematical expressions 
(Wikipedia, 2008). The models typically 
depend on a number of input parameters 
which when processed through the 
mathematical formula in the model, result in 
one or more outputs. The Monte Carlo 
Simulation is a user - friendly technique and 
can be used to numerically represent a 
physical problem based on the deterministic 

model. This is achievable by utilizing 
random numbers generated on the basis of 
probable distribution of parameters as 
inputs. In Equation (26), every random 
sample x of the random variable set X, 
yields a sample y of Y. Solving Equation 
(26) N times yield a data set (y1, y2 . yn) 
of samples of Y.   

Steps Involved In Monte-Carlo 
Simulation of Physical Process  

Static model generation  

Every Monte-Carlo simulation starts off 
with developing a deterministic model 
which closely resembles the real scenario. In 
this deterministic model, we apply 
mathematical relationships which use the 
values of the input variables, and transform 
them into the desired outputs.  

Input Distribution Identification   

When we are satisfied with the deterministic 
model, we add the risk components to the 
model. Since risks originate from the 
stochastic nature of the input variables, we 
try to identify the underlying distributions, if 
any, which govern the input variable. There 
are standard statistical procedures to identify 
input distributions.  

Random Variable Generation  

After we have identified the underlying 
distributions for the input variables, we 
generate a set of random numbers from 
these distributions. One set of random 
numbers, consisting of one value for each of 
the input variables, will be used in the 
deterministic model, to provide one set of 
output values. We then repeat this process 
by generating more sets of random numbers, 
one for each input distribution, and collect 
different sets of possible output values.     
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Application To Kinetic Parmeter 
Estimation  

When there exists a number of 
experimentally observed values of input 
variables from a kinetic study of a particular 
reaction,the Monte-Carlo simulation can be 
used to obtain the kinetic parameters (rate 
and equilibrium constants) that appear in a 
rate model if the Monte-Carlo algorithm 
incorporates the objective function (target 
function)  which in this case, will be to 
minimize the sum of square of errors 
between the experimentally observed values 
of input variables and their calculated 
values.  

Monte-Carlo simulation software  

Various options are available to use Monte 
Carlo simulations on computers. One can 
use any high level programming language 

like C, C++, Java, or one of the .NET 
programming languages introduced by 
Microsoft to develop a computer program 
for generating uniform random numbers, 
generating random numbers for specific 
distributions and output analysis. This 
program will possibly be tailor made for 
specific situations. Finally, MC simulations 
can also be performed using add-ins to 
popular spreadsheet software like Microsoft 
Excel.  

Application to Specific Reactions  

Pyrolysis of n-Eicosane  

For the initial first-order chain sequence the 
following free radical mechanism was 
proposed by Susu (1982) for the 
decomposition of n-eicosane with a C-C 
bond scission at the -isomer of iso-eicosane 
as the initiation step.   

Initiation: (CH3)2 CH(CH2)16CH3 
1     H3 + H3C H(CH2)CH3  

Propagation:  H3 + CH3(CH2)18CH3 
2     CH4 + H3C H(CH2)17CH3   

 H3C H(CH2)17CH3   3 H3CCH=CH2 + H2(CH2)15CH3   

 CH4 + H2(CH2)15CH3    4 H3 + H3C(CH2)15CH3   

Termination:    2 H3      
5 C2H6   

    H3 + H3C H (CH2)16CH3        6     (CH3)2CH(CH2)16CH3   

Based on this mechanism the overall reaction rate was given by Susu (1982) as: 

  

This rate expression is considered as first order beca use the concentration of iso-eicosane 

 

was constant throughout the decomposition reaction.The ks are the rate constants in   hr-1.  

To account for the autocatalysis of this pyrolysis reaction, a second sequence of chain reactions 
was proposed for the acceleration of the first-order reaction. For the new second-order chain 
sequence resulting from the production of alkyl radicals from propylene the following 
mechanism was proposed by Susu (1982). 



  

120

 
Initiation:  C3H6 + H3         

9       3H5 + CH4  

Propagation:         3H5 + CH3 (CH2)18          
10              C2H6 + H3C H (CH2)17CH3  

                                  C2H6 + H3C H (CH2)17CH3         
11          3H5 + H3C H (CH2)15CH3  

Termination:            H3 + 3H5         
12           C4H8     

The overall rate expression for this new mechanism was given by Susu (1982) as: 

  

This is a second-order rate model where the ks are the rate constants in cm3.gmol-1hr-1. In terms 
of fractional conversion of n-Eicosane [nC20] the two rate models can be written as: 

 

and  

  

The experimental data for this reaction were reported by Susu (1982) at three different 
temperatures, 425, 440 and 4500C and given in Table 1.   

Table 1 Experimental data for the pyrolysis of n-Eicosane 
Temperature 
(0C) 

Time 
(hr) 

Conversion of 
 n-Eicosane 
(X) 

Yield of C3H6 

(mol C3H3/mol n-
C20) 

   

425     

440     

450 

0.50 
0.75 
1.00 
1.25 
1.50 
1.75  

0.25 
0.50 
0.75 
1.00  

0.50 
0.75 
1.00 

0.06 
0.14 
0.20 
0.32 
0.42 
0.45  

0.08 
0.34 
0.40 
0.53  

0.29 
0.58 
0.72 

0.078 
0.088 
0.118 
0.046 
0.050 
0.047  

0.044 
0.049 
0.093 
0.139  

0.056 
0.063 
0.086 
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The reaction rate versus conversion curves obtained by Tikhonov regularization for n-eicosane 
pyrolysis at reaction temperatures 4250C, 4400C and 4500C were taken from the work of 
Omowunmi and Susu (2011) and are presented in Figures 1, 2 and 3 respectively.  

                

Figure.1 Rate versus Conversion curve for n-Eicosane pyrolysis at 4250C              

Figure.2 Rate versus Conversion curve for n-Eicosane pyrolysis at 4400C   

                                                                                           

Figure.3 Rate versus Conversion curve for n-Eicosane pyrolysis at 4500C  
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In order to obtain the reaction parameters (rate constants), the rate models and reaction rate-
concentration data obtained through Tikhonov regularization technique were used to conduct a 
Monte Carlo simulation. The algorithm used for the process was developed using commercial 
software MATLAB and it is shown in Figure 4.    

                                                                     

                                                                        

                                              

                                   

NO 

                                                                        YES                

Fig.4 Flow diagram of model algorithm     
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The computer program was run on 
MATLAB. The minimum and maximum 
values for the rate parameters were specified 
by series of initial guesses. For example, 
some of the minimum and maximum initial 
guesses for rate parameters of the 1st order 
kinetics are: k1 (40-100, 30-40, 0-10), k2 

(100-200, 50-100, 20-50) and k5 (10-30, 5-
10, 1-5). We also considered the range of 
values that have been reported in previous 
works on the same reaction. This has in no 
small measure reduced our task to a more 
manageable level as indiscriminate guessing 
can make the work very tedious.   

As the number of trials (simulation runs) 
increases, the number of set of random 
values generated for the parameters 
increases and we can thus, expect more 
accurate result from the simulation because 
the probability of obtaining lower objective 
functions would then increase. For instance, 
an initial one hundred and fifty simulation 
runs performed for n-Eicosane pyrolysis (1st 

order kinetics) resulted in the following least 
objective functions: 0.2760 (at reaction 
temperature 4250C) and 0.3605 (at reaction 
temperature 4400C) but for this work we 
performed three hundred simulation runs for 
each task and the corresponding values of 
the least objective functions mentioned 
earlier are 0.0173 and 0.2381 respectively.   

The generation of random variable sets was 
achieved by assuming a uniform distribution 
of values in the underlying population from 
which the values were drawn. This gave 
each value equal chance of being chosen 
from the population. The forward model is 
the rate model and is defined for each 
regularized concentration and reaction rate 
obtained from the experimental time-
concentration data. Note that since 

in Equation (29) is a constant the 

expression. it can be re-written as  

 
Where 

 
and 

 

Note also that the values used for the 
concentration of C3H6 in Equation (30) are 
tabulated in the tables of experimental data 
above in the dimensionless form 

 

yield of 

C3H6 , as a result the units of 

will be . 
These ks can easily be converted into their 

physical equivalents in by 
dividing by the initial concentration of n-
eicosane. The target function is an 
optimization procedure whose objective 
function is to minimize the sum of square of 
the errors (the difference between the 
calculated and observed rate values at each 
of the regularized concentration). 

 

                                                                       
(Target function)  

n-Heptane reforming on 
Platinum/Alumina catalyst  

Susu and Adewusi (1997) investigated the 
kinetics of reforming n-heptane on 
Platinum/Alumina catalyst. Six rate models 
were proposed based on two possible rate 
controlling steps with three different 
assumptions of hydrogen adsorption. The 
experimental data (time-concentration) were 
obtained using a pulse micro-catalytic 
reactor at a total pressure of 3918kpa and a 
temperature range of 420-5000C. Out of the 
six rate models obtained, rate model number 
VI emerged the best when all models were 
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subjected to various analyses. The rate 
model number VI is given by: 

 
Where: 

              

   

            

 

               
  

 

               Ks

  

       

              

 
Omowunmi and Susu (2012) obtained the 
reaction rate 

 
concentration data from the 

time 

 
concentration data for this reaction at 

various temperatures. Table 2 and Figure 5 
show their results (i.e the regularized 
concentrations of each species in the exit 
stream at various residence times and 
reaction rate- concentration curve for n-
heptane at reaction temperature 4600C 
respectively).  

Table.2 Regularized concentrations of reaction species in exit stream at different residence times  

Residence 
Time 

(mg.min/mml)

 

n-C7H17 

(gmol/dm3)

 

Cracked 
products 
(C2  C6) 

(gmol/dm3)

 

C6H5CH3 

(gmol/dm3)

 

C6H6 

(gmol/dm3)

 

CH3 

(gmol/dm3)

 

H2 

(gmol/dm3)

 

0.8333 0.1350 0.2480 0.2620 0.0118 0.0118 66.2017 
1.250 0.1256 0.2517 0.2661 0.0127 0.0127 66.2017 
1.580 0.1200 0.2539 0.2685 0.0131 0.0131 66.2017 
1.875 0.1115 0.2572 0.2721 0.0139 0.0139 66.2017 
2.500 0.0975 0.2628 0.2782 0.0151 0.0151 66.2017 
3.750 0.0694 0.2738 0.2904 0.0175 0.0175 66.2017 

-0.02

-0.02

-0.02

-0.02

-0.02

0.06 0.08 0.1 0.12 0.14

CONC. (gmol/m3)

R
A

T
E 

(m
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g
.m

in
) 

Figure.5 Concentration-Reaction rate profile for n-Heptane reforming on platinum/alumina at 4600C 
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This rate model (equation (32)) is a very complex one which cannot be integrated analytically to 
obtain the concentration of n-heptane as a function of the kinetic parameters and time which will 
then be incorporated as a forward model in the Monte-Carlo algorithm. We therefore, used the 
concentration-reaction rate data obtained from the original concentration-time data through 
Tikhonov regularization technique by Omowunmi and Susu (2012).We can then use the 
concentration-reaction rate data and the rate model directly (as forward model) in the Monte 
Carlo algorithm. 

                                                   (Target function)  

Results  

Tables 3 and 4 show the results of parameters estimation for n-eicosane pyrolysis. Boldface 
numbers are parameter values obtained by Monte-Carlo simulation (150 simulations) while 
lightface numbers are parameter values obtained by Omowunmi and Susu (2011) using the 
Nedler-Mead Simplex method. The results of parameter estimation and objective functions for  

Table 8 Results 300 Simulation runs for n-Heptane Catalytic reforming at 4600C 
                       

                   Table.5 Result of 150 Simulation Runs for n-heptane catalytic reforming 
n-heptane catalytic reforming are shown in Table 5. 

                                
k4f K1 K2 K3 K5 K10 K11 K12 K14 k4r 

13.1629

 

13.630 
1.8829

 

1.270 
83.8267

 

85.840 
67.4561

 

67.600 
59.4385

 

56.810 
59.4015

 

53.660 
82.0492

 

85.960 
57.2675

 

57.100 
15.2430

 

15.840 
4.3363

 

4.755 
OBJ. F    0.0632 
            0.0429 

Rate 
Constan

ts 
(hr-1) 

            Temperature (0C)  Activation   
Energy 

   425        440       450 (KJ/gmol) 

k1   

k2   

k5   

OBJ.
F 

0.0187  0.0597 0.4210    502.33 
4.091      5.486    6.490      77.09  

9.0014 9.8176  27.8911  175.07 
18.045   46.763 48.301     171.63  

0.8003  1.9809  2.8164    212.48  

4.773     7.782     9.278     112.48  

0.2760  0.3605  0.5012         -- 
0.1471   0.5935   0.614          --  

Rate 
Constants 

(hr-1) 

          Temperature (0C)                Activation  
   Energy 

   425        440          450      (KJ/gmol)  

k9   

k10   

k12   

OBJ.F 

14.7465 19.754632.5234 132.18 
55.684     59.910  104.946 98.79  

16.7982 20.740938.6409 127.55 
138.795 145.432 241.157  85.65  

10.0782 20.863028.8630 177.06 
138.184 144.838 261.691  98.83  

1.9807    1.3803    0.2101    -- 
0.0678    1.8792    1.6055    --  
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Table.6 Results of 300 Simulation runs for n-Eicosane pyrolysis(1st order kinetics                

Table.8 Results 300 Simulation runs for n-Heptane Catalytic reforming at 4600C  

k4f K1   K2 K3 K5 K10 K11 K12 K14 k4r 

13.9193

 

13.630 
1.8826

 

1.270 
86.8126

 

85.840 
61.6266

 

67.600 
59.9638

 

56.810 
53.2567

 

53.660 
85.8923

 

85.960 
52.9638

 

57.100 
15.5236

 

15.840 
4.1088

 

4.755 
OBJ. F    0.0251 
            0.0429 

 

Table.10 Result of 2000 simulation runs for n-eicosane pyrolysis  (2nd order kinetics)                     

Rate 
Constants 

(hr-1) 

Temperature (0C)  

425              440           450 

Activation 
Energy 

(KJ/gmol) 
k1  

k2  

k5  

OBJ.F 

0.0138       0.0521     0.1097 
4.091          5.486        6.490 
5.6349 9.6349 13.4877 
18.045     46.763    48.301 

0.9296       1.9296     2.8154

 

4.773           7.782       9.278 
0.0173 0.2381 0.3969 

0.1471       0.5935       0.614 

349.07 
77.09 

146.41 
171.63 
187.07 
112.48 

- 
- 

Rate 
Constants 

(hr-1) 

Temperature (0C)  

425              440           450 

Activation 
Energy 

(KJ/gmol) 
k9   

k10   

k12   

OBJ.F 

59.979        59.344          
104.802 
55.684         59.910       
104.946  

130.641      140.860       
240.484   138.795     145.432       
241.187  

130.656      140.270      
260.310 
138.184        144.838     
261.691  

0.0541 0.1412        0.0231 
0.0678       1.8792       1.6055 

85.54 
98.79  

95.09 
85.65  

107.08 
98.83  

- 
- 
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Table.11  Summary of activation energies for n-eicosane pyrolysis (1st order kinetics)  

Method                                                     Activation Energy 
                                                         (kJ/gmol) 
Rate Constants                 k1              k2              k5 

Nedler-Mead                                          77.09      171.63     112.42  

Monte-Carlo 
Simulation     
    150 simulation runs 
    300 simulation runs                                                      
    2000 simulation runs  

             
                                       502.23     175.07      
212.48 
                                       349.07     146.41      
187.07 
                                       71.75        93.43        93.89

  

Table.12 Summary of activation energies for n-eicosane pyrolysis (2nd order kinetics)  

Method                                                     Activation Energy 
                                                         (kJ/gmol) 
Rate Constants                 k9             k10            k12 

Nedler-Mead                                           98.79        85.65       
98.83  

Monte-Carlo 
Simulation     
    150 simulation runs 
    300 simulation runs                                                      
    2000 simulation runs  

             
                                        132.18     127.55      
177.06 
                                        143.17      94.77      
162.28 
                                        85.54        95.09      
107.08 

 

    

It is noteworthy to consider the results of the 
very important activation energies as 
functions of the strategies used for the 
simulation. Tables 11 and 12 present 
summaries of this comparison. The 
activation energies reported for the Nelder-
Mead method for both the 1st order and 2nd 

order kinetics of the n-eicosane pyrolysis 
reaction are the lowest recorded. Although 
the Monte-Carlo simulation was found 
superior, no matter the value of the 
simulation runs, the values of the activation 
energies predicted were excessively high at 
the lowest simulation run investigated (150). 

However, as the number of simulation runs 
increased, the value of the activation energy 
decreased considerably, until at a simulation 
run of 2000, the values of the activation 
energies were as low as were obtained for 
the Nelder-Mead simulations. The possible 
conclusion reachable from this observation 
is that the superiority of the Monte-Carlo 
simulation in predicting kinetic parameters 
could only be obtained at very high 
simulation runs to ensure reasonable values 
of both the activation energies and the 
parameters themselves.     
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The Monte-Carlo simulation technique has 
been used to obtain the model parameters 
for the pyrolysis of n-eicosane and catalytic 
reforming of n-heptane. Table 3 shows the 
values of rate constants for n- eicosane (1st 

order) kinetics. It is seen that the values of 
k1 ranges from 0.0138 at 4250C to 0.1097 at 
4500C while the values for k2 ranges from 
5.6349 at 4250C to 13.4877 at 4500C.The 
values for k5 ranges from 0.9296 at 4250C to 
2.8154 at 4500C. Generally, it is observed 
that the values for k2 are much higher than 
those for k1 and k5 at all temperatures 
reported. The least value of objective 
function is 0.1730 and it is reported for 
parameter estimation at 4250C. This means 
parameter values obtained at 4250C are most 
reliable.          

Table 4 reveals the values of rate constants 
obtained for n-eicosane pyrolysis (2nd order 
kinetics). Rate constant k9 has values 
ranging from 13.3937 to 24.0014 while k10 

value ranges from 15.3024 to 38.0033. Rate 
constant k12 also has values ranging from 
10.8348 to 29.0067. It is observed that 
values for rate constant k10 are generally 
higher than those for k9 and k12 at all 
temperatures. The least value of objective 
function is 0.0913 which is lower than the 
least obtained for the 1st order kinetics and it 
is reported for parameter estimation at 
4500C. This means that parameter values 
obtained at highest temperature 4500C are 
most reliable.      

Figure 6 Comparison of Monte-
Carlo simulated data with Experimental 

data for n-Eicosane pyrolysis (1st order 
kinetics) at 4250C     

Figure 7 Comparison of Monte-Carlo simulated data with Experimental data for  
n-Eicosane pyrolysis (1st order kinetics) at 4400C 
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Figure 8 Comparison of Monte-Carlo simulated data with Experimental data for n-Eicosane 
pyrolysis (1st order kinetics) at 4500C  

 

Figure 9 Rate Constant versus Temperature for n-Eicosane pyrolysis (1st order kinetics)  

 

Figure 10 Rate constant versus Temperature for n-Eicosane pyrolysis (2nd order kinetics)  
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Figure 11 Arrhenius plot for n-Eicosane pyrolysis (1st order kinetics)    

Figure 12 Arrhenius plot for n-Eicosane pyrolysis (2nd order kinetics)  

In the case of n-heptane catalytic reforming, 
the parameters are reported in Table 5 only 
at one reaction temperature 4600C. The rate 
constants for the forward and backward 
reactions of the rate determining step are 
13.9193 and 4.1088 respectively. On the 
other hand, the values for the equilibrium 
constants range from 1.8826 for K1 to 
86.8126 for K2. The value of the objective 
function is 0.0251.  

We can compare the kinetic parameters 
obtained through Monte-Carlo simulation 
and those obtained from Nelder-Mead 
simplex method by considering the objective 
functions obtained and activation energies 
calculated from the Arrhenius plot in each 

case. It is seen that objective functions from 
the Monte-Carlo simulation are generally 
lower than their corresponding values 
obtained through the Nelder-Mead method 
with an exception in the case of n-eicosane 
pyrolysis ( 2nd order kinetics) at 425oC. For 
the activation energies however, the reverse 
is the case (i.e. activation energies from 
Monte-Carlo are much higher than those 
from the Nelder-Mead method). When the 
rate parameters obtained by Monte-Carlo 
simulation were compared quantitatively 
with those reported by Omowunmi and Susu 
(2011 & 2012) for n-eicosane pyrolysis (1st 

order kinetics), a sharp contrast was 
observed. The least difference between 
parameters is 68.8% (in k2) at 4250C while 
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for the 2nd order kinetics, the least difference 
between parameters is 69.3% (in k9) at 
4400C. In view of the objectives functions 
obtained for both methods, this significant 
difference may be due to the superiority of 
Monte-Carlo Simulation to Nedler-Mead 
simplex method. However, there is a good 
agreement between parameters obtained for 
n-heptane catalytic reforming with the 
largest difference being 10% (in K3). From 
the results of parameter estimation for an 
initial one hundred and fifty simulation runs 
presented in Tables 6 and 7 for n-eicocane 
pyrolysis at 4250C and 4400C and in Table 8 
for n-heptane catalytic reforming at 4600C, 
it is observed that the set of values for the 
objective functions recorded for parameter 
estimation when three hundred (300) 
simulation runs were performed are 
significantly lower than their corresponding 
values recorded with one hundred and fifty 
(150) simulation runs. This shows that the 
more simulation runs we perform the lower 
the objective function we get and thus the 
more accurate the kinetic parameter values 
are. It is also noticed that the parameter 
values obtained with one hundred and fifty 
simulation runs show high deviations from 
the values obtained by Omomwunmi and 
Susu (2011) using Nelder Mead Simplex 
approach in the case of n-eicosane pyrolysis. 
Deviations are however, low in the case of 
n-heptane reforming.   

Figures 6 - 8 show the plots of conversion of 
n-eicosane against time. These plots 
compare the model prediction to 
experimentally obtained conversion values 
for the pyrolysis of n-eicosane (1st order 
kinetics) at three different temperatures. It is 
observed that there exists very little 
agreement between the n-eicosane 
conversion values. However, this little 
agreement can be taken as good in view of 
the values of the objective functions 
obtained. If more random value sets are 

generated for more simulation runs we can 
be sure of getting very small error (least 
objective function value) which will 
enhance the accuracy of the parameters so 
obtained as shown in the case of one 
hundred and fifty (150) and three hundred 
(300) simulation runs above. To buttress this 
point, another 2000 simulation runs was 
conducted and the result is shown on Tables 
8 and 9 for pyrolysis of n-eicosane (1st and 
2nd order kinetics respectively). In this new 
result, a much lower objective functions is 
obtained which result in better parameter 
estimates and lower activation energies. 
Plots of conversion against time were not 
considered for pyrolysis of n-eicosane (2nd 

order kinetics) and n-heptane catalytic 
reforming because of the complex nature of 
their rate models which do not permit easy 
integration. 
The plots of rate constants against reaction 
temperature for n-eicosane pyrolysis are 
shown in Figures 9 and 10 while the 
Arrhenius plots for the same reaction are 
shown in Figures 11 and 12. The activation 
energies obtained from the Arrhenius plots   
are   displayed    in Tables 2 and 3. Since the 
data for n-heptane catalytic reforming are 
given only at one reaction temperature 
(4600C) we did not consider plotting an 
Arrhenius plot for the reaction.  

Conclusion  

The Monte-Carlo simulation technique 
provides a reliable way of estimating the 
kinetic parameters of complex rate models 
via the Tikhonov regularization technique. 
The kinetic parameters of n-Eicosane 
pyrolysis and n-Heptane catalytic reforming 
were estimated with relative ease and good 
accuracy by the use of a computer algorithm   
developed to   perform    multiple simulation 
procedure. The MCS technique was found 
superior to the traditional Nelder-Mead 
Simplex method for the generation of kinetic 
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parameters, especially for large iterations of 
the MCST.   
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